International news within the industry of mining and metal, Apr, 24 2019
Latest News

Memory-steel - a new material for the strengthening of buildings

Steel tower, photo: Creative Commons, credit: Free-photos
Steel tower, photo: Creative Commons, credit: Free-photos
Published by
Markku Björkman - 19 Nov 2018

A new building material is about to be launched on the market: 'memory-steel' can not only be used to reinforce new, but also existing concrete structures. When the material is heated (one-time), prestressing occurs automatically.

So far, the steel reinforcements in concrete structures are mostly prestressed hydraulically. This requires ducts for guiding the tension cables, anchors for force transfer and oil-filled hydraulic jacks. 

The space requirements of all these apparatuses created the geometric framework conditions for every prestressed concrete structure; the strengthening of older structures therefore sometimes fails due to the high space requirements of this proven method.

In around 15 years of research work, experts from Empa and refer AG have now brought an alternative method to series production readiness: shape memory alloys based on iron, which contract during heating and thus permanently prestress the concrete structure.
 
Hydraulic prestressing can thus be avoided -- it is sufficient to heat the steel shortly, for example by means of electric current or infrared radiators. The new building material will be marketed immediately under the name "memory-steel." Several pilot projects, such as the reinforcement of various reinforced concrete slabs, have already been successful.

Development of memory-steel

The development of memory-steel began in the early 2000s. In the previous decades, Empa had already pioneered the strengthening of concrete with carbon fibre reinforced polymers (CFRP). This led to the idea of using shape memory alloys for prestressing concrete. 

Initial tests with nickel-titanium alloys were positive. However, the material known from medicine is far too expensive for use in the construction sector. In 2009, Empa researchers succeeded in developing an iron-based shape memory alloy, which they also patented. In 2012, researchers around Julien Michels finally founded the company refer AG; Michels has been CEO of the young company ever since.

New opportunities for old buildings

Memory-steel should first of all be used for the strengthening of existing buildings. As soon as, for example, new windows, doors or lift shafts are installed in the concrete structure of an old building, a new reinforcement of the load-bearing structure is often unavoidable. In industrial buildings, the load-bearing capacity of an old suspended slab sometimes has to be increased.

Thanks to memory-steel, such tasks can now also be easily solved in confined spaces: Either a strip of special steel is fastened under the ceiling using dowels and then heated with electricity or an infrared radiator.

Alternatively, the reinforcement can also be set in concrete: First, a groove is milled into the surface of the concrete slab, then a ribbed reinforcement bar made of memory-steel is inserted into the groove and filled with special mortar. Finally, the profile is heated with the aid of direct current and thus prestressed. Another variant is to embed the reinforcement bar in an additional shotcrete layer.

Precast concrete elements with special geometry

In the future, memory-steel could also be a proven method for manufacturing precast concrete parts with a previously unknown geometry. The hydraulic prestressing used up to now creates friction in curved structures, which greatly limits the use of this method. With a memory-steel profile embedded in concrete, highly curved constructions are now also possible: when heated, the profile contracts uniformly over its entire length without friction losses and transfer the stress to the concrete.

Market launch of memory-steel

The ready-to-install memory-steel profiles are manufactured by Voestalpine Böhler Edelstahl GmbH & Co KG in Austria. The company is also working with referring and Empa to further develop the composition of the alloy.
Story Source:

Materials provided by Swiss Federal Laboratories for Materials Science and Technology (EMPA). 

The property lies in the famous Cobalt province and is approximately 47 km south of the town of Cobalt. The picture shows an old mine in the town of Cobalt. In the early 1900s, the area was heavily mined for silver; the silver ore also contained cobalt. By 1910, the community was the fourth highest producer of silver in the world. Mining declined significantly by the 1930s, together with the local population. In late 2017 one publication referred to Cobalt as a ghost town, but the high demand for cobalt, used in making batteries for mobile devices and electric vehicles, is leading to great interest in the area among mining companies. Photo: Wikipedia, credit: P199
The property lies in the famous Cobalt province and is approximately 47 km south of the town of Cobalt. The picture shows an old mine in the town of Cobalt. In the early 1900s, the area was heavily mined for silver; the silver ore also contained cobalt. By 1910, the community was the fourth highest producer of silver in the world. Mining declined significantly by the 1930s, together with the local population. In late 2017 one publication referred to Cobalt as a ghost town, but the high demand for cobalt, used in making batteries for mobile devices and electric vehicles, is leading to great interest in the area among mining companies. Photo: Wikipedia, credit: P199

Quantum Cobalt Completes First Pass Exploration Near Temagami, Ontario

Sotkamo Silver consists of the parent company, Sotkamo Silver AB, with one wholly-owned subsidiary in Finland: Sotkamo Silver Oy. Sotkamo Silver develops silver, gold and zinc deposits in the Nordic region. The Company has completed the Definitive Feasibility Study for the Silver Mine project and is working on project financing issues. Photo: Sotkamo Silver
Sotkamo Silver consists of the parent company, Sotkamo Silver AB, with one wholly-owned subsidiary in Finland: Sotkamo Silver Oy. Sotkamo Silver develops silver, gold and zinc deposits in the Nordic region. The Company has completed the Definitive Feasibility Study for the Silver Mine project and is working on project financing issues. Photo: Sotkamo Silver

New silver mine opened in Finland

"150 trucks pro year"

The production of the first silver mine in Finland has started in Sotkamo. the mine of the Sotkamo...

The joint initiative called HYBRIT of SSAB, LKAB and Vattenfall – here with their three representatives at the fair, from right, Martin Pei technology manager at SSAB, Jan Moström CEO of LKAB and Martin Lindqvist, CEO of SSAB. HYBRIT is now on exhibit as an exciting sustainability collaboration at one of the worlds largest industrial trade fairs in Hanover. The CEOs of the three companies are in Germany to show the rest of Europe that it is possible to produce fossil free steel. Photo: SSAB
The joint initiative called HYBRIT of SSAB, LKAB and Vattenfall – here with their three representatives at the fair, from right, Martin Pei technology manager at SSAB, Jan Moström CEO of LKAB and Martin Lindqvist, CEO of SSAB. HYBRIT is now on exhibit as an exciting sustainability collaboration at one of the worlds largest industrial trade fairs in Hanover. The CEOs of the three companies are in Germany to show the rest of Europe that it is possible to produce fossil free steel. Photo: SSAB

The Swedish steel industry exposes at the Hanover Fair

"revolutionary steel industry changeover"

- The Swedish initiative for fossil-free steel production, HYBRIT, participates this week at the...